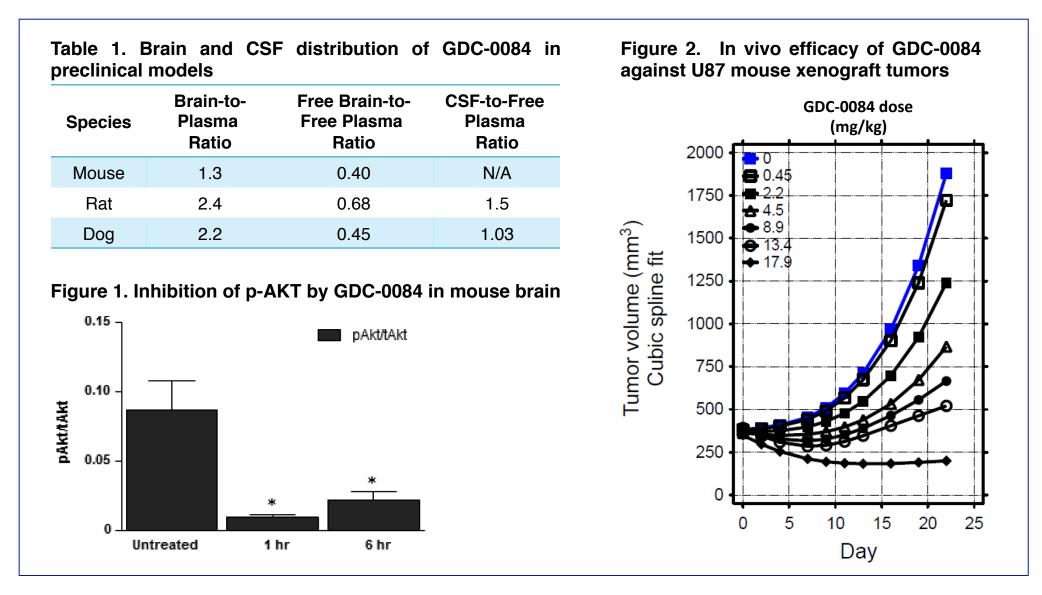

Clinical Pharmacokinetics and Brain Penetration of GDC-0084, an Oral PI3K/mTOR Inhibitor, in Patients with High-Grade Glioma

Kari Morrissey¹, Bianca Vora¹, Rui Zhu¹, Doris Apt¹, Alan Olivero¹, Joseph Ware¹, Timothy Cloughesy², Elizabeth Gerstner³, Jordi Rodon⁴, Patrick Wen⁵, and Laurent Salphati¹


¹Genentech Inc., South San Francisco, CA, USA, ²University of California, Los Angeles, CA, USA, ⁴Vall d'Hebron Institute of Oncology, Barcelona, Spain, ⁵Harvard Medical School, Boston, MA, USA, ⁴Vall d'Hebron Institute of Oncology, Barcelona, Spain, ⁵Harvard Medical School, Boston, MA, USA, ⁴Vall d'Hebron Institute of Oncology, Barcelona, Spain, ⁵Harvard Medical School, Boston, MA, USA, ⁴Vall d'Hebron Institute of Oncology, Barcelona, Spain, ⁵Harvard Medical School, Boston, MA, USA, ⁴Vall d'Hebron Institute of Oncology, Barcelona, Spain, ⁵Harvard Medical School, Boston, MA, USA, ⁴Vall d'Hebron Institute of Oncology, Barcelona, Spain, ⁵Harvard Medical School, Boston, MA, USA, ⁴Vall d'Hebron Institute of Oncology, Barcelona, Spain, ⁵Harvard Medical School, Boston, MA, USA, ⁴Vall d'Hebron Institute of Oncology, Barcelona, Spain, ⁵Harvard Medical School, Boston, MA, USA, ⁴Vall d'Hebron Institute of Oncology, Barcelona, Spain, ⁵Harvard Medical School, Boston, MA, USA, ⁴Vall d'Hebron Institute of Oncology, Barcelona, Spain, ⁵Harvard Medical School, Boston, MA, USA, ⁴Vall d'Hebron Institute of Oncology, Barcelona, Spain, ⁵Harvard Medical School, Boston, MA, USA, ⁴Vall d'Hebron Institute of Oncology, Barcelona, Spain, ⁵Harvard Medical School, Boston, MA, USA, ⁴Vall d'Hebron Institute of Oncology, Barcelona, Spain, ⁵Harvard Medical School, Boston, MA, USA, ⁴Vall d'Hebron Institute of Oncology, Barcelona, Spain, ⁵Harvard Medical School, Boston, MA, USA, ⁴Vall d'Hebron Institute of Oncology, Barcelona, Spain, ⁵Harvard Medical School, Boston, MA, ¹Oston, ¹Harvard Medical School, ¹Har

INTRODUCTION

The phosphoinositide 3-kinase (PI3K) pathway is activated in ≥80% of glioblastoma multiforme (GBM) tumors, making it a compelling target for the treatment of GBM.

- GDC-0084 is a potent, oral, selective, brain-penetrant small molecule inhibitor of PI3K and mammalian target of rapamycin (mTOR) kinase.
- In preclinical models, GDC-0084 was shown to readily distribute into the brain, with brain-toplasma ratios ≥ 1 , and brain concentrations leading to marked suppression of the PI3K pathway¹ (Table 1, Figure 1).
- In mouse xenograft models, GDC-0084 demonstrated dose-dependent tumor-growth inhibition (TGI), with 60% and 90% TGI observed at a human equivalent AUC values of 4.9 and 9.5 uM.hr, respectively¹ (Figure 2).

A first-in-human, phase 1 dose escalation study was conducted in patients with high-grade glioma using a 3+3 study design. The pharmacokinetic (PK) objective of this study was to evaluate the PK of GDC-0084 after single and multiple once daily dosing.

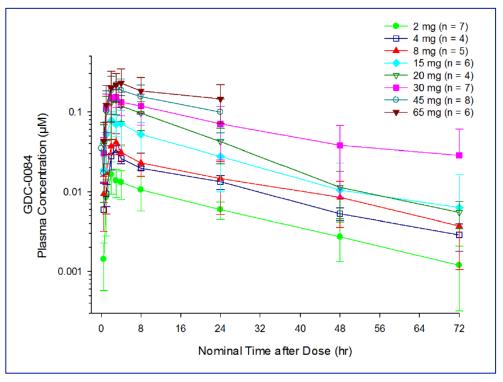
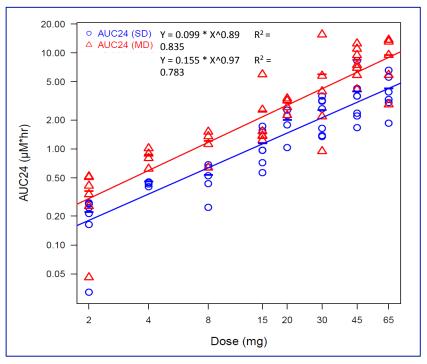
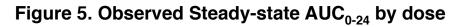
MATERIALS AND METHODS

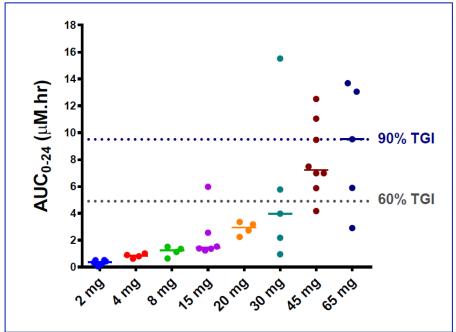
- GDC-0084 was administered orally, once daily on a continuous dosing schedule. Plasma samples for PK analysis were collected on Day 1 and Day 8 or 15 of Cycle 1.
- The PK parameters of GDC-0084 at dose levels ranging from 2 65 mg (n = 47) were determined by non-compartmental analysis.
- Brain-to-plasma ratios were calculated by measuring GDC-0084 concentrations in a post-dose surgical brain tissue sample and a post-mortem brain tissue specimen.

RESULTS

- GDC-0084 is rapidly absorbed ($T_{max} \sim 2$ hr) and demonstrates linear and dose proportional increases in exposure, with a half-life supportive of once daily dosing $(t_{1/2})$ ~19 hr) (Figures 3 and 4, Table 2).
- Exposure of GDC-0084 observed at 45 mg QD exceeds the pre-clinically predicted exposure associated with efficacy (60%TGI) in 7 of 8 patients (Figure 5).

Figure 3. Mean ± SD Plasma Concentration vs. Time Profiles of GDC-0084 Following a Single Dose


Table 2. Single Dose Mean PK Parameters

Dose (mg)	Half-life (hr)	T _{max} (hr)	C _{max} (µM)	AUC _{0_24} (μM*hr)	n
2	16.9	2.0	0.02	0.21	7
4	21.8	3.0	0.04	0.44	4
8	18.2	3.0	0.05	0.51	5
15	18.1	2.0	0.09	1.09	6
20	14.8	2.0	0.16	1.90	4
30	22.0	2.0	0.17	2.42	7
45	ND	3.0	0.23	3.12	8
65	ND	2.5	0.26	4.06	6

%TGI targets from a U87 (PTEN null) subcutaneous xenograft model

CONCLUSIONS

- GDC-0084 is rapidly absorbed and demonstrates linear and dose proportional increases in exposure, with a half-life supportive of once daily dosing.
- 2. At a dose of 45 mg, steady-state exposures were consistent with exposures associated with antitumor activity in mouse xenograft models.
- 3. Concentration data from a brain tumor resection and a post-mortem brain specimen suggest that GDC-0084 crosses the blood brain barrier, with a uniform distribution throughout the brain.
 - Brain-to-plasma ratios observed in human brain specimens are consistent with preclinical observations
 - Results from preclinical studies and post-mortem samples suggest that GDC-0084 CSF concentrations may be representative of free brain concentrations

GDC-0084 was detected at similar levels in brain tissue and brain tumor in two patient specimens, with a favorable brain-to-plasma ratio:

- Surgical brain specimen (Table 3):
 - Brain tumor/plasma: >1.43 (total), >0.48 (free)
 - Brain tissue/plasma: >1.54 (total), >0.51 (free)
- Post-mortem brain specimen (Table 4):
- Brain tumor/plasma: ~1.10 (total), ~0.38 (free)
- Brain tissue/plasma: ~0.60 (total), ~0.21 (free)
- CSF/free plasma: ~0.45

Table 3. GDC-0084 Concentration in a Surgical Brain Specimen^a

Sample	Total GDC-0084	Free GDC-0084
Plasma	0.56 uM	0.11 uM
Brain Tissue	0.86 uM	0.058 uM
Brain Tumor	0.80 uM	0.054 uM ^a

Resection of brain tissue and tumor from a patient dosed at 45 mg QD; samples obtained 5.5 hr (plasma) and 7 hr (brain) post-dose

^b Assumes same binding as brain (fu 0.067)

Table 4. GDC-0084 Concentration in a Post-Mortem Brain Specimen and CSF^a

Sample	Total GDC-0084 (post-mortem)	Free GDC-0084 (post-mortem)	<i>Estimated</i> Total GDC-0084 ^c (at steady-state)	<i>Estimated</i> Free GDC-0084 ^c (at steady-state)
Estimated Plasmab	1.64 nM	0.33 nM	0.42 uM	0.08 uM
CSF		0.14 nM		0.036 uM
Brain Tissue	0.972 nM	0.065 nM	0.25 uM	0.02 uM
Brain Tumor	1.79 nM	0.12 nM ^b	0.46 uM	0.03 uM ^d

^a Post-mortem samples from a 45 mg subject who discontinued treatment due to disease progression; samples were obtained 11 days after last dose

^b Estimated from observed data at earlier time points

° Estimated from observed C_{max.ss} data in this patient; assumes the same rate of elimination in all matricies d Assumes same binding as brain (fu 0.067)

REFERENCE

1. Heffron et al, ACS, Med. Chem. Lett., 2016